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Abstract 

Electrical conductivity σ , Seebeck coefficient S, 
electronic thermal conductivity eκ  and the thermoelectric 
figure of merit ZT are investigated theoretically in quasi-one-
dimensional (Q1D) organic semiconductors that consist of 
linear conducting chains of molecules.  Two main electron-
phonon interaction mechanisms are considered 
simultaneously.  It is shown that under certain conditions the 
interference between these interactions can occur.  As a result, 
the relaxation time ( )Eτ  as a function of carrier energy takes 
the form of a Lorentzian peak, which can be rather sharp.  The 
increase of ( )Eτ  leads to the increase of σ , and the strong 
dependence of ( )Eτ  on E ensures, simultaneously, the growth 
of S, at relatively low values of thermal conductivity.  
Unusually high values of ZT are predicted in such Q1D 
organic semiconductors. 

Introduction 
From the general principles of solid state physics there is 

no upper limit for the thermoelectric figure of merit.  Simply, 
the traditional methods for the search of materials with 
improved thermoelectric properties, formulated long time ago 
[1] have practically exhausted themselves [2].  Recently, this 
search has been extended significantly by the emergence of 
quantum confined structures: quasi-two-dimensional (Q2D), 
quasi-one-dimensional (Q1D) and quasi-zero-dimensional 
(quantum-dot) superlattice materials [3].  Theoretically, the 
possibility has been shown [4,5] to increase the thermoelectric 
figure of merit ZT (at room temperature T) of quantum well 
(QW) material in PbTe/PbEuTe QW structures, due to 
electron confinement, by 2.6 times in comparison with that of 
the best bulk value.  The dimensional confinement leads also 
to an increase of the phonon scattering rate and, accordingly, 
to a strong drop of the in-plane lattice thermal conductivity 
[6].  The phonon engineering can give an important additional 
increase of ZT [7].  An improvement of thermoelectric 
properties of IV-VI based quantum well [8,9] and quantum 
dot [10] superlattice materials has been observed 
experimentally.  A factor of seven enhancement of ZT relative 
to bulk Si has been measured for the Si/Ge superlattice [11].  
A value of ZT~2.4 has been observed [12] in p-type 
B2Te3/Sb2Te3 superlattice at room T.  Certainly, in order to 
extend considerably the applications of thermoelectric devices 
it is necessary to obtain new materials with higher values of 
ZT.  Therefore, it is of especial importance to search and 
investigate materials with more complicated electronic and 
phonon spectra, which would permit to overcome the 
restrictions on ZT increase, observed in conventional binary 
and ternary compounds.  In this regard, the investigation of 
thermoelectric properties of new organic materials present 

significant interest.  Note that the possibility to achieve ZT 
enhancement in organic semiconductors has already been 
discussed in literature [13-15]. But only recently the progress 
in synthesis of organic materials made their proposed 
thermoelectric applications feasible.   

In the present paper we show that in quasi-one-
dimensional organic crystals it is possible to obtain values of 
ZT considerably higher than unity.  It has been already 
demonstrated [16,17] that in such crystals it is possible to 
achieve an extremely high carrier mobility or electrical 
conductivity. 

Description of Quasi-One-Dimensional Crystals 
From the structural point of view the highly conducting 

Q1D organic crystals are formed of linear chains of molecules 
that are packed into a 3D crystalline structure.  The distance 
between the molecules along the chains is considerably less 
than in transversal direction.  Accordingly, the overlap of 
electronic wave functions along the chains is significant, 
whereas between the chains it is very small.  The carriers are 
moving mainly along the separate chains and jump from one 
chain to another rarely.  The ion-radical salts of 
tetrathiofulvalene-tetracyanoquinodimethane (TTF-TCNQ) 
type, complexes with a charge transfer, crystal polymers 
belong to the Q1D class of crystals [18]. 

Usually, in Q1D systems there are different phase 
transitions, characterized by respective critical parameter, for 
example the temperature.  However, it is known that for 
temperatures higher than the maximum phase transition 
temperature, in order to study the transport phenomena, it is 
possible to neglect in the first approximation the weak 
interaction between the chains.  Then we obtain a simpler 1D 
crystal model [16,17].  It is important to note, that the 
considered here model takes into account simultaneously two 
electron-phonon interaction mechanisms.  The first is 
determined by the variation of the transfer energy W (or 
transfer integral) for an electron from one molecule to the 
neighboring one, caused by the lattice acoustic vibrations.  
This interaction is similar to that of the deformation potential 
and was already used to describe the electrical transport in 
Q1D crystals of TTF-TCNQ type [19].  The coupling constant 
of this mechanism is proportional to the derivative W ′  of W 
with respect to the intermolecular distance.  The second 
interaction mechanism is connected with the variation, due to 
the same intermolecular vibrations, of the polarization energy 
of molecules surrounding the conduction electron.  This 
mechanism is similar to that of the continuum polaron model, 
only here the question is about induced polarization.  The 
coupling constant of this mechanism is proportional to the 
mean polarizability 0α  of the molecule.  This mechanism has 
been considered in literature as well [20,21], but only in 



particular cases.  It is very important to consider both these 
interactions together, because under certain values of crystal 
parameters the interference between them becomes possible 
[16]. 

Using the band scheme in the tight-binding and nearest-
neighbors approximations, the matrix element ( , )A k q  of the 
electron-phonon interaction can be written in the form 

1/ 2 1/ 2( , ) 2 (2 )qA k q i W NMω −′= h  

[ ]sin sin( , ) sinka k q a qaγ× − − + ,  (1) 
2 5

02e a Wγ α ′= ,   (2) 
where the first two terms in Eq.(1) represent the matrix 
element of the first interaction mechanism, and the third term, 
respectively, that of the second mechanism mentioned above.  
The parameter γ  has the meaning of the ratio of amplitudes of 
these two mechanisms, e is the electron charge, M is the mass 
of the molecule, N is the number of molecules in the basic 
region of the chain, a is the lattice constant along the chains.  
The dispersion law of conduction electrons is given by the 
usual expression ( ) 2 (1 cos )k W kaε = − , where k is the 
projection along the chains of the electron wave vector.  The 
sign of W is chosen so that 0W >  for the band of s-type, and 

0W <  for the p-type one.  The dispersion law for longitudinal 
acoustic phonons has the standard form 

12 sin 2q sa qaω υ −= , where sυ  is the sound velocity along 
the chains, q is the projection along the chains of the phonon 
wave vector. 

Thermoelectric Transport 
We are interested in the study of thermoelectric transport 

at temperatures T close to room temperature.  At such T the 
scattering processes can be considered elastic.  The mentioned 
interference of electron-phonon interactions may be disturbed 
by the scattering of carriers on impurities or by other 
scattering mechanisms.  The latter will be neglected as less 
important.  But the impurities will be taken into account and 
considered for simplicity neutral, randomly distributed and 
point-like (δ - function similar).  In this case the Boltzmann 
kinetic equation is solved exactly, confirming the existence of 
the relaxation time.  It is convenient to present the relaxation 
time , ( )s p Eτ  as a function of the carrier energy for s- and p-
type bands respectively 
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Here 4W∆ =  is the conduction band width, 0 E≤ ≤ ∆ , 

,
0 2 ( 1)s pE W γ γ= ±  is the resonance energy, 0k  is the 

Boltzmann constant, 0 300KT = , D is a parameter, which 
takes into account the impurity scattering, imn  is the linear 
impurity concentration, I and d characterize the effective 
height and width of the impurity potential, and the phonon 
distribution function has been replaced by its high T limit. 

If 0γ =  and 0D = , i.e. only the first interaction 
mechanism is included, the expression which results from (3) 
coincides with the formula (2.38) of Ref. [19].  But if 1γ ≥ , 

, ( )s p Eτ  as a function of energy E takes the form of a 

Lorentzian centered in the conduction band at ,
0
s pE E= .  If 

additionally 1D << , i.e. the impurity scattering is very weak, 
the Lorentzian becomes rather sharp.  This means that the 
energy states around ,

0
s pE  are characterized by very long 

relaxation time and reduced scattering rate.  The carriers in 
these states will have increased mobility. 

Already from expression (3) for , ( )s p Eτ  it is seen that the 
crystals with such parameters will have improved 
thermoelectric properties.  Increased values of , ( )s p Eτ  will 
ensure high value of σ , and a sharp dependence of , ( )s p Eτ  
on E will lead simultaneously to the growth of the 
thermopower S. 

By using the Eq.(3) for , ( )s p Eτ  it is possible to write the 

expressions for σ , S and eκ  in integral form.  Here we will 
consider only the non-degenerate case when the calculations 
are simpler.  We obtain 

0Rσ = ;     1 0S R eTR= ;    2 2
2 1 0( )e R R R e Tκ = − ,    (5) 

where 
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with ( )s Eτ  and ( )p Eτ  for s- or p-type bands, respectively.  
Here FE  is the Fermi energy, which will be considered of the 
order of 0 0( 3 )k T− , 2 2 2( ) ( )E a E Eυ −= ∆ −h  is the square of 
the carrier velocity as a function of energy E, 

[ ] 1 2( ) (2 ) ( )E r a E Eρ π −= ∆ −  is the density of states per unit 
volume and energy, and r is the number of chains on 1 cm2 of 
the transversal section of the crystal.  The integrals in σ , S 
and eκ  can be calculated in analytical form, but the respective 
expressions are very cumbersome and cannot be presented 
here. 

At the same time it is interesting to consider the situation 
when the Lorentzian in ( )Eτ  is very sharp, i.e. 1γ >  and 

1D << .  In this case the integrals 0R , 1R  and 2R  can be 
calculated approximately by decomposing the Lorentzian in 
series on D. 

For the calculation of σ  it is sufficient to take only the 
first term from the decomposition, which corresponds to the 
replacement of the Lorentzian by delta function, and we obtain 
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where 0σ  is the approximated conductivity, determined by 
only the first interaction mechanism ( 0γ = , 0 0D = ) at 

0 300 KT = ,  



[ ]2 2 3 2 1 2 2 1 2
0 0 0 0 01 (2 ) ( )se nM W k T W W k Tσ υ π ′ = −  h ,   (9) 

and n is the 3D carrier concentration.  It is seen that if only 
,

0
s pE  is not very much greater than 0 0k T , then , 0s pσ σ> , so as 

0D  is in the denominator and 2
0 ( 1) 1D γ − << .  Thus, the 

inclusion of the second interaction does not diminish ,s pσ , but 
increases it, due to above mentioned mutual compensation of 
interaction mechanisms.  The growth of ,s pσ  is determined by 
the carriers that populate through thermal activation the range 
of states near ,

0
s pE  with high mobility. 

For the calculation of ,s pS  it is necessary to take two terms 
in the decomposition of the Lorentzian after 0D , and we find 

[ ])(~)()( 00
,

00, DTkEEekS F
ps

ps +−= . (10) 
In thermoelectric applications the first term in (10) must be as 
great as possible, and the second term, which is proportional 
to 0D , may be neglected.  The value of ,s pS  directly depends 

on the difference ( ),
0
s p

FE E− , and may easily achieve 

(400 600) V/Kµ± ÷ .  If ,
0
s p

FE E> , the sign of ,s pS  coincides 

with that of the majority carriers.  If ,
0
s p

FE E< , the excitation 
of carriers lower than FE  means the creation of opposite sign 
carriers, and the sign of ,s pS  is opposite. 

For ,
e
s pκ  it is necessary to take at least two terms in the 

decomposition of the Lorentzian, and we obtain 

( )2 1 2 2 2 3 2
0 04e W T e Tκ σ γ= ,  (11) 

where 0σ  is defined by (9).  It is seen that eκ  does not 
depend on the band type, therefore the indexes s- and p- were 
omitted.  As eκ  is proportional to 7 2W , its value grows 
rapidly with the increase of W (or band width).  Therefore, we 
will choose for calculations a crystal with a not large band 
width.  Let's take a crystal with the parameters close to those 
of TTF p-type chains in the TTF-TCNQ crystal [19]: 

53.7 10 eM m= × , 0.075 eVW = , 0.02 eVW ′ = Å-1, 
52 10 cm/ssυ = × , 2r bc=  (2 chains through the bc section of 

the elementary cell), 12.3a = Å, 3.82b = Å, 18.47c =  Å ( b
r

 
is the direction of chains).  If we shall put 0 03FE k T= − , it 
corresponds to the hole concentration 19 -33.83 10 cmn = ×  and 

1 -1
0 11.7 cmσ −= Ω .  For 1.5γ =  the formula (11) gives 

0.39 mW/cmKeκ = , a rather low value of eκ .  With the 
increase of γ , eκ  will continue to decrease as 2γ − . 

Now the expression for ,( )s pZT  can be written as 

,
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where Lκ  is the lattice thermal conductivity and eκ  is 
determined by (11).  The thermal conductivity of TTF-TCNQ 
crystals at 300K has been determined experimentally [22], 
being equal to 10 mW/cmK and dominated by the phonon 
part.  If we shall take this value for Lκ  and the above 
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Figure 1. Calculated: (a) - pσ ; (b) - Sp; (c) - e
pκ ; and (d) -

(ZT)p as a function of γ . 2
0D : 1-10-4; 2-10-3; 3-10-2. 



mentioned ones for the other crystal parameters, we obtain at 
300 KT =  1 1

0( ) 2.1 10pZT D− −= × , i.e. ( ) 21pZT =  for 
2

0 10D −= .  Numerical calculation after the exact expressions 
of σ , S, eκ  and ZT gives for these parameters ( ) 20.2pZT = , 
a value very close to the approximate one.  This fact confirms 
the applicability of used approximations for the given range of 
crystal parameters.  To this value of ( ) pZT  corresponds 

3 -1 -13.90 10 cmpσ = × Ω , 423 V/KpS µ= , 369.0=eκ  

mW/cmK.  If the parameter 0D  is a little greater, 3 / 2
0 10D −= , 

from (12) follows ( ) 6.6pZT = , still a very good value.  For 
larger values of 0D  numerical calculation is needed.  
Obtained values of ( ) pZT  are not yet optimized with respect 
to crystal parameters.  So, even higher values of ( ) pZT  can be 
expected. 

The results of numerical calculation of pσ , Sp, e
pκ  and 

( ) pZT  as functions of the parameter γ  for a p-type crystal 
with the above mentioned physical parameters and different 
values of 0D  are shown in Fig.1.  It is seen that at small γ  
( 1γ << ) the values of all kinetic coefficients do not depend on 

0D  and ZT is rather small.  The mutual compensation of 
electron-phonon interactions does not take place.  When 

1γ > , pσ  grows considerably, especially at small 0D  (curve 
1 in Fig.1a) due to important increase of carrier mobility, and 
has a pronounced maximum, which depends essentially on 

0D .  The interference of interaction mechanisms considerably 
affects pσ .  When pσ  increases, Sp decreases, but remains at 
rather high values.  The dependence of Sp on 0D  is weak.  
Even for such high carrier concentration as 19 -34 10 cm× , e

pκ  
is rather small, due to large carrier effective masses.  The 
maximum value ( ) 23.5pZT =  is achieved for 1.3γ =  and 

2
0 10D −= .  With the increase of 0D  this maximum decreases 

considerably. 

Conclusions 
A mechanism for large enhancement of ZT in Q1D organic 

semiconductors is proposed.  It is related to the mutual 
compensation of two main electron-phonon interaction 
mechanisms for a narrow range of carrier states in the 
conduction band.  As a result, the relaxation time as a function 
of carrier energy takes the form of a sharp Lorentzian.  The 
carriers in these states have significantly increased mobility.  
The Seebeck coefficient attains large values as well due to 
strong dependence of relaxation time on energy. As a result, it 
is predicted that the room temperature ZT  can be as high as 
20 in such materials. 
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